Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Chem Biol Interact ; 383: 110678, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37595776

RESUMO

Nerve agents (NA) pose as a great risk in the modern world. NA from the V-series, such as VX, are currently recognized as the most toxic among those compounds. However, the emergence of new classes of toxicants recently included in the Chemical Weapons Convention (CWC), such as the A-series NA, a class of organophosphorus compounds related to phosphoramidates, pose a new source of concern due to the lack of information. In order advance in the investigation on the toxicity of such toxic chemicals, we performed in vitro studies to compare representatives of the V- and A-series using affordable surrogates. Results suggest a similar inhibition potency between both agents.


Assuntos
Acetilcolinesterase , Agentes Neurotóxicos , Agentes Neurotóxicos/toxicidade , Substâncias Perigosas , Compostos Organofosforados/toxicidade
2.
J Mol Model ; 29(6): 183, 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37212923

RESUMO

CONTEXT: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of the COVID-19 infection and responsible for millions of victims worldwide, remains a significant threat to public health. Even after the development of vaccines, research interest in the emergence of new variants is still prominent. Currently, the focus is on the search for effective and safe drugs, given the limitations and side effects observed for the synthetic drugs administered so far. In this sense, bioactive natural products that are widely used in the pharmaceutical industry due to their effectiveness and low toxicity have emerged as potential options in the search for safe drugs against COVID-19. Following this line, we screened 10 bioactive compounds derived from cholesterol for molecules capable of interacting with the receptor-binding domain (RBD) of the spike protein from SARS-CoV-2 (SC2Spike), responsible for the virus's invasion of human cells. Rounds of docking followed by molecular dynamics simulations and binding energy calculations enabled the selection of three compounds worth being experimentally evaluated against SARS-CoV-2. METHODS: The 3D structures of the cholesterol derivatives were prepared and optimized using the Spartan 08 software with the semi-empirical method PM3. They were then exported to the Molegro Virtual Docking (MVD®) software, where they were docked onto the RBD of a 3D structure of the SC2Spike protein that was imported from the Protein Data Bank (PDB). The best poses obtained from MVD® were subjected to rounds of molecular dynamics simulations using the GROMACS software, with the OPLS/AA force field. Frames from the MD simulation trajectories were used to calculate the ligand's free binding energies using the molecular mechanics - Poisson-Boltzmann surface area (MM-PBSA) method. All results were analyzed using the xmgrace and Visual Molecular Dynamics (VMD) software.


Assuntos
Produtos Biológicos , COVID-19 , Humanos , SARS-CoV-2 , Produtos Biológicos/farmacologia , Simulação de Dinâmica Molecular , Bases de Dados de Proteínas , Simulação de Acoplamento Molecular , Antivirais/farmacologia
3.
J Biomol Struct Dyn ; 40(11): 5229-5242, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-33416020

RESUMO

The acute respiratory syndrome caused by the SARS-CoV-2, known as COVID-19, has been ruthlessly tormenting the world population for more than six months. However, so far no effective drug or vaccine against this plague have emerged yet, despite the huge effort in course by researchers and pharmaceutical companies worldwide. Willing to contribute with this fight to defeat COVID-19, we performed a virtual screening study on a library containing Food and Drug Administration (FDA) approved drugs, in a search for molecules capable of hitting three main molecular targets of SARS-CoV-2 currently available in the Protein Data Bank (PDB). Our results were refined with further molecular dynamics (MD) simulations and MM-PBSA calculations and pointed to 7 multi-target hits which we propose here for experimental evaluation and repurposing as potential drugs against COVID-19. Additional rounds of docking, MD simulations and MM-PBSA calculations with remdesivir suggested that this compound can also work as a multi-target drug against SARS-CoV-2.Communicated by Ramaswamy H. Sarma.


Assuntos
Tratamento Farmacológico da COVID-19 , SARS-CoV-2 , Proteases 3C de Coronavírus , Cisteína Endopeptidases , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Preparações Farmacêuticas , Inibidores de Proteases
4.
Toxins (Basel) ; 12(12)2020 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-33256167

RESUMO

Ricin is a toxin found in the castor seeds and listed as a chemical weapon by the Chemical Weapons Convention (CWC) due to its high toxicity combined with the easiness of obtention and lack of available antidotes. The relatively frequent episodes of usage or attempting to use ricin in terrorist attacks reinforce the urge to develop an antidote for this toxin. In this sense, we selected in this work the current RTA (ricin catalytic subunit) inhibitor with the best experimental performance, as a reference molecule for virtual screening in the PubChem database. The selected molecules were then evaluated through docking studies, followed by drug-likeness investigation, molecular dynamics simulations and Molecular Mechanics Poisson-Boltzmann Surface Area (MM-PBSA) calculations. In every step, the selection of molecules was mainly based on their ability to occupy both the active and secondary sites of RTA, which are located right next to each other, but are not simultaneously occupied by the current RTA inhibitors. Results show that the three PubChem compounds 18309602, 18498053, and 136023163 presented better overall results than the reference molecule itself, showing up as new hits for the RTA inhibition, and encouraging further experimental evaluation.


Assuntos
Ricina/antagonistas & inibidores , Ricina/química , Algoritmos , Sítios de Ligação , Substâncias para a Guerra Química/química , Descoberta de Drogas , Ligação de Hidrogênio , Ligantes , Conformação Molecular , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...